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Abstract

A method for efficient solution of the Kohn–Sham equations, the central equations of density-functional electronic

structure calculations, is presented. It combines the simplicity of the damped gradient iteration with the efficiency of

multigrid techniques. The long-standing problem of calculating the optimized effective potential of Kohn–Sham theory

for orbital density functionals has been solved with this algorithm.
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1. Kohn–Sham theory with orbital functionals

Density-functional theory (DFT) [1] has become one of the most widely used theories for calculating the

electronic structure of molecules, clusters and solids. The centerpiece of Kohn–Sham DFT [2] are the

Kohn–Sham equations

ĥsr
�

� eir
�
uirðrÞ ¼ 0; ð1Þ

where ĥsr ¼ �ð�h2=2mÞr2 þ vsrðrÞ is the Kohn–Sham Hamiltonian. The Kohn–Sham potential
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vsrðrÞ ¼ vðrÞ þ vHðrÞ þ vxcrðrÞ; ð2Þ

is the sum of the external potential vðrÞ, the Hartree potential vHðrÞ ¼
R
d3r0e2nðr0Þ=jr� r0j, and the spin-

dependent exchange-correlation potential

vxcrðrÞ ¼ dExc½n�=dnrðrÞ; ð3Þ

which is rigorously defined as the functional derivative of the exchange and correlation energy functional

Exc½n� with respect to the spin density. From the self-consistent solutions of Eq. (1) the ground-state spin

densities nrðrÞ ¼
PNr

i¼1 juirðrÞj
2
and total density n ¼ n" þ n# are calculated. The ground-state energy is then

obtained from E½n"; n#� ¼ Ts½n"; n#� þ EH½n� þ Exc½n"; n#� þ
R
nðrÞvðrÞd3r.

The success of Kohn–Sham DFT rests on two columns. One column is the ‘‘Jacob’s ladder’’ [3] of in-

creasingly sophisticated approximations for Exc½n�. While the local density approximation (LDA) [1,2] al-

ready lead to reasonable results for many solid-state systems, the advent of the generalized gradient
approximations (GGAs) established DFT as a method for calculating the properties of many finite systems

that so far had to be treated with wave-function based quantum-chemical methods. Meta-GGAs can

achieve yet greater accuracy and the most recent form [4] leads to a uniformly improved description.

However, all these semi-local density functionals are not fully self-interaction [1,5] free and the self-inter-

action error might be the single most important error in present day energy functionals. Curing this

problem is therefore an important aspect of density-functional development.

The oldest successful self-interaction correction was the one of Perdew and Zunger [5] (PZ-SIC). More

modern approaches achieve freedom from self-interaction by using exact exchange and iso-orbital indi-
cators [6–8] and appear very promising [3,8,9]. However, both approaches have a drawback in practical

applications: the resulting exchange-correlation functionals are orbital functionals, i.e., implicitly they are

functionals of the density, but explicitly they are known only as functionals of the Kohn–Sham orbitals

(see, e.g. [10,11] for detailed discussions). Thus, the exchange-correlation potential cannot be calculated by

directly evaluating Eq. (3), but the functional derivative has to be obtained from the optimized effective

potential (OEP) integral equation [10,12–14]

XNr

i¼1

Z
u�

irðr0Þ vxcrðr0Þ
�

� uxcirðr0Þ
�X1
j¼1

j 6¼i

ujrðr0Þu�
jrðrÞ

eir � ejr
d3r0uirðrÞ þ c:c: ¼ 0; ð4Þ

where

uxcirðrÞ ¼
1

u�
irðrÞ

dExc½fujsg�
duirðrÞ

: ð5Þ

Until recently, accurately solving this complicated integral equation for finite systems was only possible

for effectively one-dimensional problems (spherical atoms [13,15] and jellium spheres [16]). Three-dimen-

sional solutions based on Gaussian basis-set expansions [17–19] yield correct total energies but are nu-

merically involved and do not produce the correct asymptotic behavior [20] of the potential (see [21] for a

discussion of some of the numerical problems). Different approximations to the true OEP have been

proposed [22–25]. Their common advantage is computational simplicity, but at the cost of introducing
additional approximations beyond the ones already inherent in the energy functional itself.

An iterative approach to solving the OEP equation allows to calculate the exact exchange-correlation

potential efficiently and accurately for any orbital functional [20]. It is based on the fact that Eq. (4) can be

rewritten in the form [10,22]

vxcrðrÞ ¼
1

2nrðrÞ
XNr

i¼1

juirðrÞj
2 uxcirðrÞ
h�

þ ð�vxcir � �uxcirÞ
i
� �h2

m
r � w�

irðrÞruirðrÞ
� ��

þ c:c: ð6Þ
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Here, the w�
irðrÞ are the first-order perturbation theory orbital shifts defined by w�

irðrÞ ¼ �
P1

j¼1; 6¼i

huirjuxcir � vxcrjuiriu�
jrðrÞ=ðeir � ejrÞ and �vxcir ¼ huirjvxcrjuiri, �uxcir ¼ huirjucxcirjuiri are orbital averages.

The practical usefulness of Eq. (6) stems from the fact that the w�
i ðrÞ can be calculated accurately and

efficiently from the partial differential equations that result from first-order perturbation theory

ðĥsr � eirÞw�
irðrÞ ¼ �½vxcrðrÞ � uxcirðrÞ � ð�vxcir � �uxcirÞ�u�

irðrÞ: ð7Þ

(For the sake of notational simplicity, non-degenerate orbitals are assumed. The extension to degenerate

orbitals is straightforward [11].)

OEP can be calculated iteratively in the following way: for a given orbital functional Exc½fui½n�g�, start
with a suitable approximate expression for vxcðrÞ, e.g., the KLI-expression [22] which corresponds to ne-

glecting all terms in Eq. (6) that involve the w�
irðrÞ, and solve Eq. (1) self-consistently within this approx-

imation. With the resulting uiðrÞ the right-hand side of Eq. (7) can be evaluated and the equation solved.

The thus obtained w�
irðrÞ can be inserted into Eq. (6) to obtain a new and better approximation to vxcðrÞ.

(This step can also be modified such that dividing by the density, required for evaluating Eq. (6), can be

avoided [20].) This procedure is repeated until self-consistency for the exact vxcðrÞ (OEP) is reached.

Convergence is quickly achieved, see below.

Detailed tests of this method have been done for spherical atoms using the true nuclear Coulomb po-

tential [11,20]. For spherical atoms the OEP equation can also directly be solved [13] and total energies and

Kohn–Sham eigenvalues from the iterative approach were compared to the ones obtained from the direct

solution algorithm. The results agreed to all significant digits [11,20]. As a further check the exchange virial

relation [11,26] has been investigated. It is violated by about 1% by the KLI approximation. The iterative
construction reduces the error in the virial relation to 10�7% and the tests thus show that the iterative

algorithm indeed leads to the true OEP.

In this way, the problem of solving a very complicated integral equation has been reduced to solving

systems of coupled partial differential equations. The combination of new, orbital based self-interaction free

energy functionals [3,9] and an efficient algorithm for calculating the corresponding Kohn–Sham potential

appears as a promising route to considerably extend the applicability of DFT in electronic structure cal-

culations. For practical applications, one thus ‘‘only’’ needs efficient numerical algorithms for solving the

underlying partial differential equations.
2. The damped gradient iteration

2.1. Overview

From the computational point of view, the second column on which the success of Kohn–Sham DFT

rests are the various numerical techniques which have been developed to solve the Kohn–Sham equations.
These can roughly be divided into two groups: methods that expand the relevant quantities in some basis

set, typically plane waves or Gaussians, and methods that directly solve Eqs. (1)–(3) in real space. Here, the

focus will be on the real space approaches. They are finding increasing interest [27–30] because they avoid

the questions of basis-set completeness that can sometimes trouble Gaussian-based calculations for finite

systems, they provide accurate and straightforward access to quantities like polarizabilities that would

require special basis sets, they can efficiently be parallelized [28] and they are the method of choice for non-

linear time-dependent calculations [30,31] that are required in the context of strong-field (e.g., ultra-short

laser pulse) physics.
One particular way of solving equations like Eq. (1) is the damped gradient iteration of [32,33]. There,

the method has been discussed in the context of nuclear Hartree–Fock calculations whereas here, the

systems we have in mind are molecules and clusters described by some given energy density-functional. In
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the following it will be discussed how the damped gradient iteration can be combined with multigrid

techniques to achieve a straightforward and efficient algorithm for solving the Kohn–Sham and OEP

equations. In addition, adaptive stepsize control will be discussed as an extension of the algorithm that
increases the convergence rate.
2.2. Basic equations

Obviously, one can find the highest eigenvalue emax of the operator ĥs (for notational simplicity the spin-

index is dropped here) and its eigenfunction umax by the iteration
umax;mþ1 ¼ ĥsumax;m=ðemax;m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
humax;mjumax;mi

q
Þ;
where

emax;m ¼ humax;mjĥsjumax;mi;

if the starting guess umax;0 is not orthogonal to the true umax: umax;0 can be expanded in the eigenfunctions of

ĥs, each application of ĥs projects out the eigenvalue of each eigenfunction, and after a couple of iterations,
umax dominates the expansion. Using a similar argument one can show that repeated application of the

operator ô ¼ 1� dSðĥs � e1Þ with subsequent normalization leads to the smallest eigenvalue of ĥs if the real
parameter dS obeyes 0 < dS < 2=ðemax � e1Þ. (Note that on a finite real space grid there is always a discrete

largest eigenvalue since the maximum kinetic energy is limited by the grid spacing.) The latter algorithm is

the ‘‘simple gradient iteration’’. It is robust and easy to program but for large scale applications it has the

serious drawback of very slow convergence due to the appearance of emax in the denominator of the upper

bound for the stepsize dS. Although emax usually is of no interest in the actual calculation, its mere existence

seriously limits the possible stepsize.
The damped gradient iteration remedies this shortcoming by formally replacing the parameter dS by

the operator d̂dg ¼ d=ð̂t þ eÞ, where d and e are positive real parameters and t̂ is the kinetic energy

operator. The reasoning for this replacement is that from the two contributions to emax, i.e., potential

and kinetic energy, the kinetic contribution by far dominates. If it can be factored out, a much larger

steplength and thus faster convergence is possible. The stepping operator d̂ achieves exactly this. The

inverse t̂ leads to a steplength that is limited (‘‘damped’’) by the kinetic energy contributions actually

present in the iterated orbital and no longer globally limited by the existence of a large emax. The

parameter e is added to stabilize the components with small kinetic energy, i.e., it represents the
contribution of the potential to emax. Consequently, e must be set to a value that roughly corresponds

to the depth of the Kohn–Sham potential. Decreasing e leads to faster convergence but also decreases

the stability of the iteration. The parameter d is the stepsize of the damped gradient iteration and

‘‘summarizes’’ the effects that e1 and dS had in the simple iteration based on ô. With an additional

orthogonalization step, eigenvalues and orbitals above the lowest one can be calculated. The full al-

gorithm for the damped gradient iteration (step number m to mþ 1) thus reads:
ui;0 ¼ ui;initial guess; ð8Þ
u0
i;m ¼ ui;m �

d
t̂ þ e

ĥs;m
h

� hui;mjĥs;mjui;mi
i
ui;m; ð9Þ
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u00
i;m ¼ u0

i;m �
Xi�1

j¼1

uj;mhuj;mju0
i;mi; ð10Þ
ui;mþ1 ¼
u00

i;mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hu00

i;mju00
i;mi

p ; for i ¼ 1; . . . ;N : ð11Þ

In this form one can now easily see why the damped gradient iteration is attractive for self-consistent

calculations where only the few lowest occupied orbitals are needed: it does not try to reach self-consistency

by repeatedly solving the eigenvalue problem of Eq. (1) (with the potential updated via Eq. (2)) by some

diagonalization routine. Instead, the eigenvalue problem is solved iteratively only once and the self-

consistency updates are performed along with the iteration that solves the eigenvalue problem. This is
indicated in Eq. (9) by the index m on hs. Thus, the damped gradient iteration minimizes the numerical

burden from solving the eigenvalue problem.
2.3. Implementation using multigrids

The central step of the damped gradient iteration is Eq. (9). By introducing an intermediate function
~ui;m ¼ 1

t̂þe ½ĥs;m � hui;mjhs;mjui;mi�ui;m it can be reduced to solving the inhomogeneous linear system

ð̂t þ eÞ~ui;m ¼ ðĥs;m � ei;mÞui;m; ð12Þ

for ~ui;m. (Note that all quantities on the right-hand side are known from the previous iteration step.) Solving

this equation fast and efficiently is the objective of a practical implementation. The many advantages of

multigrid techniques for solving partial differential equations are well known [27,34] and need not be re-

peated. The focus thus is on how Eq. (12) can be solved with this technique.

The first thing to be noted is that Eq. (12) looks similar to Poisson’s equation of electrostatics: in

Rydberg atomic units (�h2=ð2mÞ ¼ 1, e2 ¼ 2), �t̂ is just the Laplace operator D and Eq. (7) can be written in

the shorthand notation

ðD� eÞu ¼ F ; ð13Þ

where u ¼ �~ui;m and F is used as an abbreviation for the right-hand side. The set of multigrid routines for
solving Eq. (13) can therefore be developed taking into account experience from multigrid solvers [34] for

the Poisson equation.

All equations including Eq. (13) are discretized on a three-dimensional cubic Cartesian grid since this

allows for a suitable representation of the kinetic energy and all potentials that appear in the pseudopo-

tential-based calculations of the electronic properties of the clusters that we are aiming at. The grid ex-

tension depends on the size of the system to be studied and for the clusters of interest here roughly ranges

between 30 and 50 Bohr radii (a0). The grid spacing dx ranges from about 0.25a0 for hydrogen with a hard

pseudopotential [35] to about 0.7a0 for sodium with a soft pseudopotential [36]. Below this finest grid, the
usual series of coarser grids is built, each having the same physical extension but twice the grid spacing than

the next finer grid. Bilinear interpolation is used for the prolongation operations from the coarse to the fine

grids. The restriction from fine to coarse grids is done by filling each point on the coarse grid by averaging

over the corresponding point on the fine grid and its next, second next and third next neighbors, i.e., the

smallest possible cube around the corresponding point on the fine grid. The points on the cube are weighted

according to their spatial distance from the central point [37]. In this way one can go through the full

multigrid algorithm, starting on the coarsest grid and working upwards. However, it yet remains to be
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specified how the relaxation steps on each grid are to be performed, and this is where an important dif-

ference between Poisson’s problem and Eq. (13) is encountered.

Due to its excellent smoothing properties and simplicity, Gauss–Seidel relaxation [34] is the method of
choice for the relaxation steps if it can be made stable. The second derivatives appearing in D are repre-

sented by three and five point finite difference formulas on the smallest grids and close to grid boundaries

and seven point formulas in all other cases in order to be able to work with a larger dx. For the sake of

notational simplicity, however, three point formulas will be used throughout in the following equations.

Introducing indices j; l;m with x ¼ jdx, y ¼ ldx, z ¼ mdx so that a point uðx; y; zÞ is represented by ujlm, the
iteration step from n to nþ 1 for Eq. (13) reads [38]

unþ1
jlm ¼ unjlm þ dt

dx2
unjþ1lm

�
þ unj�1lm þ unjlþ1m þ unjl�1m þ unjlmþ1 þ unjlm�1 � 6unjlm

�
� dt eunjlm

�
þ Fjlm

�
: ð14Þ

The real parameter dt appearing here is the relaxation step length. If it is chosen too large, the iteration

Eq. (14) diverges. On the other hand it is highly desirable to use the largest possible value for dt in practical

applications since otherwise the convergence is too slow. For the Poisson equation the maximum value is

well known, dtP;max ¼ dx2=6. However, the additional term e makes Eq. (13) non-trivially different from

Poisson’s equation and there is thus no reason for why the Poisson value for dtmax should still be appro-
priate. In fact, if it is used in the multigrid scheme for solving Eq. (13), the iteration quickly diverges and

one finds that the relaxation steps on the coarsest grids (which are usually the most ‘‘well behaved’’ ones)

diverge the fastest.

This behavior can be understood and the maximum value of dt found by subjecting Eq. (13) to von

Neumann stability analysis [34]. The spirit of this analysis is that Eq. (14) is interpreted as the diffusion

equation ou=ot ¼ ðD� eÞu� F with forward Euler differencing for the time derivative. Iterating Eq. (14)

thus corresponds to ‘‘relaxing’’ a starting guess to equilibrium. Substituting a plane wave

unjlm ¼ Anexpiðkjjdxþ klldxþ kmmdxÞ into Eq. (14) will tell us how a general Fourier component will de-
velop ‘‘in time’’ with discrete timesteps ndt, i.e., under iteration of the differencing scheme of Eq. (14). The

iteration is stable only if jAj6 1 for all k. Evaluating Eq. (14) for the plane wave after some straightforward

algebra leads to

A ¼ 1þ dt
2

dx2
X3
i¼1

cosðki dxÞ
 "

� 3

!
� e

#
: ð15Þ

Substituting this expression into the stability criterion then gives the desired maximum allowed time step

dt6
2

12
dx2 þ e

: ð16Þ

(The analogous analysis for higher-order differencing schemes leads to dt ¼ 2=½272=ð45dx2Þ þ e� for seven
point finite differences and dt ¼ 2=½16=ð3dx2Þ þ e� for five points.)

Eq. (16) reduces to the Poisson step for e ¼ 0. For non-vanishing e, the maximum allowed step for Eq.

(14) is always smaller than the Poisson step. This at first sight looks as if the computational effort for

solving Eq. (12) might be considerably larger than the one for obtaining the electrostatic potential.
However, in our applications e is usually of order 0.5 Ry. Thus, the e in the denominator matters most

when dx is large, i.e., on the coarse grids with few points. On these grids, the smaller maximum steplength in

the relaxation can be compensated by increasing the number of iterations, and the resulting increase in

computational cost will be small since there are only few points in the grids. On the other hand, for the fine

grid with many points the first term in the denominator dominates and the resulting maximum step is very

close to the Poisson step.
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In summary, the central equation of the damped gradient iteration can straightforwardly be solved with

multigrid relaxation in analogy to the well studied case of Poisson’s equation. The only necessary modi-

fications are that the differencing scheme must be extended to include e and the maximum steplength must
be chosen according to Eq. (16). The reduction in steplength is noticeable mainly on the coarsest grids and

is compensated there by adding a few additional relaxation steps.

2.4. Adapative stepsize control

Thus, everything needed for implementing the algorithm of Eqs. (8)–(11) is at hand. However, a simple

modification of the ‘‘traditional’’ algorithm [32,33] is helpful. Instead of using a fixed stepsize d as in [33],

the convergence rate can be increased by allowing for a different stepsize for each orbital and adjusting it
dynamically during the iteration. We tested different schemes and found that a simple pragmatic approach

works well. The iteration is started with the same d for all orbitals, as in [33] (e.g., for the Na clusters with

dx about 0.7a0, d is about 0.8). After each iteration of Eqs. (8)–(11) it is tested for each orbital whether the

variance ½hhs;mui;mjhs;mui;mi � hui;mjhs;mjui;mi
2�1=2 has been reduced by at least a certain threshold value, e.g.,

10%. If not, the damped gradient stepsize di for this particular orbital is increased by a few percent. If one

finds that the variance increases for an orbital, the corresponding di is decreased until the variance also

starts to decrease and di is then kept at the largest stable value.

In this way one can compensate for the fact that the higher lying orbitals converge more slowly due to
their greater number of nodes, i.e., higher kinetic energy which appears in the denominator of the stepping

operator. As an additional bonus, lengthy experimentation to determine the optimum stepsize is avoided.

In the cases studied, this simple measure reduces the number of damped gradient iteration steps necessary

to reduce the variance to a certain value by nearly 50% in most cases. The little additional effort for the

bookkeeping is thus well justified.

2.5. Employing orbital functionals

Everything said so far is enough to do Kohn–Sham calculations with explicit density functionals like

LDA or GGAs. If orbital functionals are to be employed one needs to solve one more partial differential

equation, Eq. (7), as discussed in Section 1. Stability analysis analogously to the one above shows that Eq.

(7) is unconditionally unstable under Gauss–Seidel relaxation, and this does not come as a surprise since

Eq. (7) is singular: if it is written in matrix form, the operator on the left-hand side cannot be inverted. It is

obvious that there cannot be a unique solution because to any given solution w�
i one can add an arbitrary

multiple of ui to obtain another solution. However, the definition of w�
i below Eq. (6) shows that the

particular solution of Eq. (7) that we are seeking is the one orthogonal to ui. This particular solution can
easily be calculated by the well known conjugate gradient method [34]. The conjugate gradient algorithm

constructs the solution by adding a sequence of corrections to a starting guess. Basically, the first correction

is constructed by letting the left-hand side operator act on the starting guess and subtracting the result from

the right-hand side. Following corrections are calculated analogously [34]. It is easily verified that the right-

hand side is orthogonal to ui, and thus conjugate gradient iteration automatically leads to the desired

orthogonal solution. Small spurious non-orthogonal contributions due to numerical inaccuracies can be

removed by explicitly orthogonalizing w�
i to ui. For computationally demanding applications the conjugate

gradient routine can be embedded in another multigrid environment for increased execution speed.
Finally, it is to be noted that the examples given in the following involve a three-dimensional Cartesian

grid. On such a grid, the true nuclear potential with its Coulomb singularity cannot be represented accu-

rately. For the present calculations this does not pose a problem since pseudopotentials are used. But it

should be stressed that the method works as well when the full nuclear Coulomb potential is used. This

has been demonstrated explicitly for atoms in [11,20] and combining our algorithm with the grid-based
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all-electron molecular technique described in [10] should also be straightforward. Since the partial differ-

ential equations on which the algorithm is based are completely general, there is also no obvious reasons

why solving them by some kind of basis-set expansion should be problematic.
3. Application: cluster calculations

3.1. Exact Kohn–Sham exchange for the sodium cluster Na6

As a first application of the previously discussed algorithm the exact Kohn–Sham exchange potential for

sodium clusters was calculated [20]. Since exact exchange is expected to be an important part of the next
generation of density functionals because it cancels the Hartree self-interaction, this is an interesting ex-

ample. The exact exchange energy of Kohn–Sham theory is defined as the Fock-Integral

Ex½fug� ¼ � e2

2

XNr

i;j¼1

r¼";#

Z Z
u�

irðrÞu�
jrðr0ÞujrðrÞuirðr0Þ
r� r0j j d3r0d3r; ð17Þ

evaluated with Kohn–Sham orbitals, i.e., with the orbitals coming from the local Kohn–Sham potential, not

the Hartree–Fock orbitals [39]. The external potential is given by the ionic geometry that minimizes the

total energy and each ion is described by a soft pseudopotential [36]. The starting guess for the Kohn–Sham

orbitals is constructed from the atomic orbitals corresponding to the pseudopotential. For the cluster Na6
that was chosen as a test case here, the total energy and Kohn–Sham eigenvalues are converged within 10�4

Ry (starting from the KLI-approximation) after four iterations of going back and forth between self-

consistent solution of the Kohn–Sham equations with fixed vx and updating vx via the orbital-shift Eq. (7).

It should be stressed that the Kohn–Sham eigenvalues are obtained stably without any need for a posteriori

shifts, e.g., for Na6 the eigenvalues of the valence electrons are (in Hartree atomic units) eKLI
1 ¼ �0:1871

and eKLI
2 ¼ eKLI

3 ¼ �0:1494 in the KLI approximation and e1 ¼ �0:1861 and e2 ¼ e3 ¼ �0:1496 for the

OEP.

Fig. 1 shows the resulting vexactx ðrÞ for Na6, plotted once along the x-axis and once along the z-axis. The
striking result is that the potential goes to different asymptotic limits in different spatial directions. This
-0.5

-0.4

-0.3

-0.2

-0.1

 0

-20 -15 -10 -5  0  5  10  15  20

V
x 

(R
y)

x or z (a  )0

along z axis

along x axis

z

y

Fig. 1. The exact Kohn–Sham exchange potential for Na6, calculated with the algorithm of Section 2. The ground-state cluster ge-

ometry and labeling of axes is indicated in the inset. Note that the exact exchange potential goes to different asymptotic limits in

different spatial directions as a consequence of Eq. (6) [20,23].
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behavior has been predicted theoretically and is a consequence of the orbital-average terms that appear in

the first line of the right-hand side of Eq. (6) [23,20]: non-vanishing asymptotic constants are encountered

whenever the highest occupied orbital has a nodal plane that reaches out to infinity. In Na6 there are two
degenerate highest occupied orbitals, one px and one py-like. Their nodal planes intersect on the z-axis and

thus the exact exchange potential falls of to 0 like �e2=r everywhere except for on the z-axis. That this only

recently discovered [20,23], counter-intuitive property of the exact Kohn–Sham exchange potential is

correctly obtained is a reassuring test of our algorithm.

3.2. Chain of hydrogen atoms

Chain molecules (polymers) are a critical testing ground for conventional, semi-local functionals. It has
been shown [40] that these functionals fail badly in particular for predicting the non-linear polarizabilities

of such systems (they strongly overestimate them) whereas functionals incorporating exact exchange lead to

a realistic description. As a paradigm test system, chains of hydrogen atoms have been investigated [40]

comparing LDA, Hartree–Fock and Kohn–Sham exchange in the KLI approximation. It was found that

compared to LDA, Kohn–Sham exchange in the KLI approximation greatly reduced the errors but did not

lead to as realistic results for the second hyperpolarizabilities as Hartree–Fock theory: the KLI hyperpo-

larizabilities are still somewhat larger than the ones from Hartree–Fock theory. This is a puzzle because one

expects exact Kohn–Sham exchange and Hartree–Fock exchange to give very similar answers. One hy-
pothesis to explain the discrepancy is that for molecular chains there is a noticeable difference between the

KLI-potential and the exact OEP. However, this to a certain extent is a daring hypothesis because it has

been shown for many atoms that the KLI-potential and OEP-potential are very close [22]. In [40] the exact

OEP could not be constructed and the hypothesis thus not tested.

Since our present implementation as discussed in Section 2 is based on cubic grids it is well suited to

study compact systems like metal or semiconductor clusters and less suited for linear systems. Work is

under way [41] to develop a code for systems with one dominant direction of extension and this should

allow to calculate hyperpolarizabilities of chain molecules accurately. Nevertheless our present imple-
mentation already allows to qualitatively test the above mentioned hypothesis. Fig. 2 shows the exchange

potential for a chain of six hydrogen atoms. The interatomic distances were chosen as in [40], i.e., alter-

nating between 2 and 3a0. The broken line shows the KLI-potential and the full line the OEP. The general
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Fig. 2. The exact Kohn–Sham exchange potential (OEP, full line) and the KLI approximation to vxðrÞ (dashed line) for a chain of six

hydrogen atoms. The circles indicate the positions of the atoms. See text for details.
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trends in the potentials are similar but an important difference can be noted: the OEP has more pronounced

minima and maxima than the KLI-potential. Thus one can expect that the OEP ‘‘traps’’ the electrons more

strongly than the KLI-potential. Consequently, a stronger electrical field will be required to transfer
electrons along the chain and it appears very plausible that this will reduce the hyperpolarizabilities.
4. Summary

A method for numerically solving the central equations of Kohn–Sham electronic structure theory was

discussed with particular emphasis on orbital functionals. The method combines the transparency of the

damped gradient iteration with the efficiency of multigrid techniques. Instead of treating the Kohn–Sham
eigenvalue problem and the self-consistency iteration as separate steps and thus having to solve the ei-

genvalue problem several times (after each self-consistency update), the eigenvalue problem is solved only

once. One iteration with interlaced self-consistency updates reaches self-consistency and the solution of the

eigenvalue problem at the same time. The method of iteratively solving the OEP equation for orbital

functionals via calculation of first-order orbital shifts can easily be combined with this method. In this way,

the problem of directly solving the OEP integral equation – which proved to be practically impossible in the

past – can elegantly be sidestepped and the exact OEP can nevertheless be calculated. As an example

the three-dimensional exact exchange potential of the neutral six-atom sodium cluster was calculated and
the peculiar property of non-vanishing asymptotic constants in the exact Kohn–Sham exchange potential

demonstrated. As a second example, the exchange potential for a chain of hydrogen atoms was calculated

and the observed differences between the exact potential and the KLI approximation set in relation to the

question of accurately predicting the hyperpolarizabilities of chain molecules.
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